Welcome to the Primary Maths Parent Workshop

Aims of the workshop

- Introduce the curriculum at BSB Shunyi
- A brief overview of why we approach Maths in a particular way
- Look at the developmental Stages of Maths
- What are the 3 stages we use at BSB Shunyi?
- What is the concrete stage?
- What is the pictorial stage?
- What is the abstract stage?
- How students are challenged further - reasoning and application
- How you can help your child at home
- questions

Maths at BSB Shunyi

Whiterose Scheme of work Reviewing topics - flashback 4 Chili Differentiation
Adding challenge through:

- Discussion
- Problem Solving
- Paired/group work
- NRich/Youcube activities

Choose your challenge level

I am less than 90	My digits add up to an odd number
I am even	I am more than 70
My tens digit is odd	If you rounded me to the nearest ten you would get 70
My tens digit is greater than my ones digit	Count up or down in fours from 60 and you get to me

from 60 and you get to me

Our Brains Think about Math Visually
youcubed

Not good at Maths

Students rarely cry about other subjects - they have a belief that Maths is about memorisation and speed.

However, in English, we learn by using words in different situations - why should Maths be any different.

For example:
How can you make 8?
Let's play a game with dice

Developmental Stages and Neurological Pathways

When working on a mathematical problem, at least 5 different pathways in the brain are involved -including 2 that are visual.

Scientific research has proven that the best times for brain growth and change are when people are working on challenging content, making mistakes, correcting them, moving on, making more mistakes and always working in areas of high challenge.

When students can make connections between these brain regions, seeing, for example, a mathematical idea in numbers and in pictures, more productive and powerful brain connections develop.

The 3 Stages of Development

Within each topic that we teach in Maths, we ensure that the 3 stages for each area are covered.

- Concrete (hands on)
- Pictorial (Drawing)
- Abstract (Formal methods)

Using this process, there is a build-up to create the most cognitive links.

As part of the CPA approach, new concepts are introduced through the use of physical objects or practical equipment. These can be physically handled, enabling children to explore different mathematical concepts. These are sometimes referred to as maths manipulative and can include ordinary household items such as straws or dice, or specific mathematical resources such as dienes or numicon.

Pictorial－The＇seeing＇stage

In maths，teachers often refer to pictorial representations． As the name suggests，this means that the children are looking at a picture（or visual representation）to help them solve the calculation．This could be a drawing of objects to be counted，but could also be a bar model，a part－whole diagram or base ten drawings．

Abstract- The 'symbolic' stage

Once children have a secure understanding of the concept through the use of concrete resources and visual images, they are then able to move on to the abstract stage. Here, children are using abstract symbols to model problems - usually numerals. To be able to access this stage effectively, children need access to the previous two stages alongside it. For the most effective learning to take place, children need to constantly go back and forth between each of the stages. This ensures concepts are reinforced and understood.

Reasoning/Challenge

It is essential that children are challenged to further develop neurological pathways by applying what they already know to new challenges.

Let's have a go
On your tables you have one of these activities.

	13	৫6	11	
t3	r	24	83	
		2	SO	
Ya	N	१®	२	58
25	b-	2	人t三	

3 Block Towers

You need some coloured blocks, three different colours, maybe red, green and blue.
Make a tower using one of each colour
Here's one with red on top, blue in the middle and green on the bottom.

Now make another tower with a different colour on top.

How many different towers can you make?
When you are sure you have found them all, try it with four colours.

FORD
ANGLIA

Questions

