Year 1 and 2 Summer Maths Challenge

Complete all the sections of the challenge to find out who switched the signs at the Aquarium!

When you have finished put the following on a piece of paper and hand this in to Ms Debs next year.

Name:
Class:
Name of the culprit:

The Mystery of Zone A at the Aquarium

Miss Turnip's class is visiting the aquarium. All the children have been put into groups and sent off to explore with an adult.
Disaster has struck - at dinner time, Miss Turnip notices that the signs have been switched around in Zone A. Nobody knows which animal is which!

Use the descriptions and the clues to find out who the sign switching culprit is.

Good luck!

Clue 1: Solve the problems
Solve the problems and draw a line to the correct answers.

There are 20 penguins altogether.
They are fed in 4 separate groups.
How many penguins are in each
feeding group?

Each penguin eats 5 kg of fish a day. How many kilograms of food is fed to the group of 20 penguins every day?

Each penguin has two flippers. How many flippers will 20 penguins have altogether?

All 20 penguins have been divided into 2 equal groups. How many penguins are in each group?

Next week, the aquarium are welcoming 25 more penguins. How many penguins will there be altogether?

```
100
Age: }
```

\qquad

Clue 2: Missing Numbers

Complete the number sequences below by filling in the missing answers. Colour in the words that match the numbers you have filled in.

Rearrange the words so that it makes sense and you will reveal the colour of the culprit's hair.

Clue 2: \qquad

ANGLIA

Clue 3: True or False

If the calculation is right, put a tick in the 'True' column ' \checkmark '. If the calculation is wrong, put a cross in the 'False' column ' x '.

	True	False
Half of 19 is 8		
3 less than 87 is 84		
$41>45$		
$92=62+30$		
$8 \times 5=40$		
$\frac{1}{2}$ of $8=3$		
$6+4+3=14$		
$3+17=10+10$		
$\frac{1}{4}$ of 12 is 4		
Total		

Be Ambitions

Clue 4: Feeding Time

Solve the answers to the questions about the pictogram and colour the answers in the grid.

Then, rearrange the words into a sentence to reveal which group number the culprit is in.

The pictogram shows how many fish the cheeky penguins tipped out of the bucket \square
Monday Tuesday Wednesday Thursday Friday Saturday

Wednesday the	5 is in	50 group 3
75	25 culprit	Saturday isnt

How many fish were tipped out of the bucket on Thursday? \qquad
On which day were the most fish tipped out of the bucket? \qquad
How many more fish were tipped out on Tuesday than Monday? \qquad -.
How many fish were tipped out at the weekend? \qquad —.

Clue 4

\qquad .
$\| \rightarrow \pi$
Clue 5: Code Breaker
Solve the calculations and use the code breaker to reveal an anagram. Then, rearrange the letters to find the culprit's favourite animal.

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{l}	\mathbf{m}
15	7	18	14	2	12	13	10	20	23	4	22	16

\mathbf{n}	\mathbf{o}	\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{s}	\mathbf{t}	\mathbf{u}	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}
30	5	17	11	25	6	19	1	26	24	8	3	21

	answer	letter
$30 \div 5$		
$17+3$		
$2+2+2+2+2$		
Half of 24		
12×2		
3 more than 19		
10×3		
2 lots of 9		
$\frac{1}{4}$ of 20		

Clue 5: The culprit's favourite animal is a \qquad
The culprit is \qquad

